Cohomology of Chevalley groups over finite fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Fields, Root Systems and Orbit Numbers of Chevalley Groups

We describe combinatorial techniques to determine the numbers of semisim-ple conjugacy classes and adjoint orbits with xed class of centralizers for simply connected nite groups of Lie type.

متن کامل

Heisenberg groups over finite fields

ing this computation, for given k-vectorspace V with non-degenerate alternating form 〈, 〉, put a Lie algebra [2] structure h on V ⊕ k by Lie bracket [v ⊕ z, v′ ⊕ z′] = 0⊕ 〈v, v′〉 In exponential coordinates on H, the exponential map h→ H with H ≈ V ⊕ k is notated exp(v ⊕ z) = v ⊕ z with Lie group structure on H by (v ⊕ z) · (v′ ⊕ z′) = (v + v′)⊕ (z + z′ + 〈v, v ′〉 2 ) (exponential coordinates in...

متن کامل

Characters of unipotent groups over finite fields

Let G be a connected unipotent group over a finite field Fq. In this article we propose a definition of L-packets of complex irreducible representations of the finite group G(Fq) and give an explicit description of L-packets in terms of the so-called “admissible pairs” for G. We then apply our results to show that if the centralizer of every geometric point of G is connected, then the dimension...

متن کامل

Characters of Reductive Groups over Finite Fields

Let E be a connected reductive algebraic group over C and let W be its Weyl group. The Springer correspondence allows us to parametrize the irreducible representations E of W as F = F^^ where u is a unipotent element in G (up to conjugacy) and <p is an irreducible representation of the group of components AH(u) = ZH(u)IZ°H(u). (However, not all <p arise in the parametrization.) For F = F^Uttp) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1980

ISSN: 0022-4049

DOI: 10.1016/0022-4049(80)90031-6